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ABTRACT

The present-day Tibetan plateau, which is the largest highland on Earth, formed primarily due to the India-Asia collision since 50–60 Ma. 
The development of the plateau has been associated with the Cenozoic development of two large intra-plateau sedimentary basins in 
north-central Tibet: the Qaidam and Hoh Xil basins to the north and south of the Eastern Kunlun Range, respectively. We conducted an 
integrated study of these two basins and the Eastern Kunlun Range that separates them to understand the timing and mechanisms of 
their development in order to decipher the growth and uplift history of the plateau. Crustal shortening in the Fenghuoshan-Nangqian and 
Qilian Shan-Nan Shan thrust belts initiated no later than the early Eocene, which formed the northern and southern boundaries of the 
combined Hoh Xil and Qaidam basins in central Tibet. The distinct two-stage development of the Hoh Xil basin suggests emergence of 
a topographic barrier between the Hoh Xil basin in the south and Qaidam basin in the north in the early Neogene, which is supported by 
the existing and new apatite fission-track data from the Eastern Kunlun Range that suggest rapid cooling after ca. 20 Ma. Previous and 
newly collected geochronological, petrological, and thermochronological data are best interpreted in the context of the Paleogene Paleo-
Qaidam hypothesis, which requires Hoh Xil and Qaidam basins to have been parts of a single integrated basin during the early stage of 
the Cenozoic Tibetan plateau development.

INTRODUCTION

Understanding how the Cenozoic Tibetan plateau has been developed 
in response to the Indo-Asian collision has important implications for 
deciphering the dynamics of large-scale intracontinental deformation 
and their impacts on a wide range of geologic processes (Harrison et al., 
1992; Molnar et al. 1993, 2010; Liu-Zeng et al., 2008; Yin, 2010; Favre et 
al., 2015; Ding et al., 2017; Haproff et al., 2018). Current models for the 
formation of the plateau vary from vertically uniform lithospheric short-
ening, lower-crustal flow, continental subduction, convective removal of 
mantle lithosphere, large-scale underthrusting, to accumulation of Ceno-
zoic sediment (e.g., England and Houseman, 1986, 1989; Dewey et al., 
1988; Royden, 1996; Tapponnier et al., 2001; DeCelles et al., 2002; Wang 
et al., 2011; Yu et al., 2015). A detailed knowledge of uplift and deforma-
tion across the plateau is necessary to establish a unified understanding 
of plateau evolution.

The Hoh Xil and Qaidam basins of central-northern Tibet (Fig. 1) 
are two intra-plateau basins that figure importantly in the above debate. 
Specifically, the timing and geometry of their formation can inform us 
on the spatial and temporal uplift of bounding thrust-related ranges. The 
two basins are currently separated by the active 1000-km-long left-slip 
Kunlun Fault in Tibet (e.g., Cowgill et al., 2003; Robinson et al., 2003; Fu 
and Awata, 2007; Duvall et al., 2013; Yuan et al., 2013; Zuza et al., 2017), 
which is located within the Eastern Kunlun Range (Fig. 1). It has been 
proposed that these two basins were once connected as a single Paleogene 
basin (Figs. 2A and 2B), which is known as the Paleo-Qaidam basin (Yin 
et al., 2008a, 2008b). Existing thermochronologic data for the Eastern 
Kunlun Range include 40Ar/39Ar, fission-track, and (U-Th)/He results from 
across the range. Sparse 40Ar/39Ar and apatite fission-track data reveal slow 
Jurassic cooling and rapid Neogene cooling across the Eastern Kunlun 
Range (Jolivet et al., 2001; Wang et al., 2004; Y. Liu et al., 2005a; Yuan 
et al., 2006; Chen et al., 2011; Duvall et al., 2013; Wang et al., 2016; 
Yuan et al., 2013; Wang et al., 2017), and this inferred Neogene uplift of 
the Eastern Kunlun Range raises the question of whether Qaidam and 
Hoh Xil basins were originally connected. However, some fission-track 
and (U-Th)/He studies have resulted in a wide range of ages for rapid 
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Figure 1. An index geologic map of Tibet after Yin and Harrison (2000) that shows the locations of the study areas. The two major Cenozoic sedimentary basins of the central Tibetan 
plateau, the Qaidam and Hoh Xil basins, are superposed on the Kunlun terrane and Songpan-Ganzi and northern Qiangtang terranes, respectively. The bold dashed line indicates the areal 
extent of the inferred Paleogene Paleo-Qaidam basin. Note the abbreviations of major lithologic and tectonic units are defined as: THS—Tethyan Himalayan sequences (Proterozoic to Late 
Cretaceous passive continental margin strata); LHS—Lesser Himalayan metasedimentary series; GHC—Greater Himalayan Sequence; ITS—Indus-Tsangpo suture; BNS—Bangong-Nujiang 
suture; JS—Jinsha suture; KQD—Kunlun-Qinling-Dabie suture; SQS—south Qilian suture; NQS—north Qilian suture; MKT—Main Karakorum Thrust.
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Figure 2. (A) Paleogene tectonic configuration of the Tibetan plateau in present-day geographic coordinates. The Paleo-Qaidam basin lies between the 
elevated Lhasa block and the Fenghuo Shan thrust belt in the south and the elevated Qilian Shan in the north. The region northwest of the Tibetan 
plateau was a large topographic depression, with the linked Tarim and Junggar basins across the Tian Shan because the Tian Shan was not uplifted 
until the early Miocene (Yin et al., 2008a, 2008b). (B) Neogene tectonic configuration of the Tibetan plateau in present-day geographic coordinates. 
The initiation of the Eastern Kunlun left-slip transpressional system caused the uplift of the Eastern Kunlun Range, which has partitioned the Paleo-
Qaidam basin into the Hoh Xil basin to the south and the Qaidam basin to the north. These two maps (A) and (B) based on Yin et al. (2008b). Note: 
ITS—Indus-Tsangpo suture; BNS—Bangong-Nujiang suture; JS—Jinsha suture; KQD—Kunlun-Qinling-Dabie suture. Digital topographic map was 
derived from the Global Multi-Resolution Topography (GMRT) Synthesis by Ryan et al. (2009) (http://www.geomapapp.org).
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cooling ranging from ca. 40 to 0 Ma (e.g., Clark et al., 2010; Dai et al., 
2013; Duvall et al., 2013). The Paleo-Qaidam hypothesis implies that the 
original Qaidam basin was much larger in the early Cenozoic and bounded 
by different structures (i.e., Paleo-Qaidam basin) (Figs. 2A and 2B). In 
addition, this model emphasizes the role of large basin development and 
discrete northward jumping of thrust systems (e.g., Meyer et al., 1998).

In this contribution, we conducted an integrated field and analytical 
study involving detailed geologic mapping, sedimentology, sandstone 
petrologic analyses, U-Pb detrital zircon geochronology, tectonic set-
ting analysis, and thermochronologic analysis across the Hoh Xil basin–
Eastern Kunlun Range–Qaidam basin of western China (Fig. 1). We first 
outline the regional tectonic framework of Tibet and introduce the studied 
sedimentary basins to place our provenance analysis in perspective. Our 
new field and analytical observations allow us to (1) establish the struc-
tural framework and uplift history of the Eastern Kunlun Range, and (2) 
interpret whether a large Paleogene basin existed in central-north Tibet. 
We ultimately present new constraints on the tectonic reconstruction of 
the central-north Tibet and evolution of its Cenozoic basins.

REGIONAL TECTONIC FRAMEWORK

The primary tectonic domains of the Tibetan plateau include, from 
north to south, the Qilian terrane, Kunlun-Qaidam terrane, Songpan-Ganzi 
terrane, Qiangtang terrane, Lhasa terrane, and the Himalayas (e.g., Allégre 
et al., 1984; Dewey et al., 1988; Yin and Harrison, 2000; Gehrels et al., 
2011) (Fig. 1). Below is a brief review of the geology of these domains, 
which is necessary to adequately interpret sedimentary provenance and 
any detrital zircon data set. Three major phases of magmatism occurred 
at the Qilian terrane (Cowgill et al., 2003; Gehrels et al., 2003a, 2011; Yin 
et al., 2007b; Wu et al., 2017; Zuza et al., 2018): (1) at 960–820 Ma as 
small isolated plutons intruding the North China craton, (2) at 520–400 
Ma as arc related plutons and volcanic complexes, and (3) at ca. 270 Ma 
as isolated plutons of the Permian Kunlun arc. Mesozoic extensional 
structures and related basin deposits have been documented around the 
Qilian terrane (e.g., Chen et al., 2003; Chen et al., 2014). In addition, 
Proterozoic magmatism or metamorphic events at 1700–2000 Ma (Chen 
et al., 2013; Liao et al., 2014) and 2350–2550 Ma (Lu, 2002; Lu et al., 
2006; Gong et al., 2012; X.J. Yu et al., 2017c; S. Yu et al., 2017b) occurred 
in the South Qilian Shan and northern Qaidam basin.

The Kunlun-Qaidam terrane includes the Eastern Kunlun Range 
and Qaidam basin, and consists of Precambrian basement intruded by 
Ordovician-Devonian plutons, and Permian to Triassic arc sequences, 
including the prominent Permian-Triassic Kunlun batholith exposed in 
the Eastern Kunlun Range (Fig. 1; Mock et al., 1999; Cowgill et al., 2003; 
Robinson et al., 2003; Gehrels et al., 2003a, 2003b; Mo et al., 2007; X.H. 
Chen et al., 2012b; Cheng et al., 2016; C. Wu et al., 2016a; Dong et al., 
2018; Wu et al., 2019). At the western end of the Eastern Kunlun Range, 
Cretaceous plutons have also been documented (Robinson et al., 2003). 
Some minor Neoproterozoic ages have also been also reported in recent 
studies (e.g., He et al., 2016a, 2016b, 2018). The Triassic Yidun arc bound-
ing the southeastern side of the Songpan-Ganzi terrane is the eastern 
extent of the Permian-Triassic Kunlun batholith and is locally intruded 
by Cretaceous (ca. 95–105 Ma) granites (Reid et al., 2007; C. Wu et al., 
2016a; Jackson et al., 2018). The Qaidam basin is bounded by the Altyn 
Tagh Range to the northwest, and the Paleozoic granitoids are widely 
exposed in the Altyn Tagh region. Six episodes of granitic magmatism 
can be distinguished at ca. 517 Ma, 501–496 Ma, 462–451 Ma, 426–385 
Ma, 352–343 Ma, and ca. 265 Ma in the south Altyn Tagh (e.g., Kang et 
al., 2011; Liu et al., 2009; C.L. Wu et al., 2016b); whereas numerous early 
Paleozoic granitoid plutons (i.e., 500–405 Ma) are exposed throughout 

the north Altyn Tagh (e.g., Sobel and Arnaud, 1999; C.L. Wu et al., 2005, 
2016b; Kang et al., 2011).

The Songpan-Ganzi terrane is composed mainly of a Triassic sub-
marine-fan turbidite complex deposited during the closure of the Paleo-
Tethys Ocean (Fig. 1; Yin and Nie, 1996; Nie et al., 1994; Weislogel et 
al., 2006, 2010; Enkelmann et al., 2007; Zhang et al., 2014; C. Wu et al., 
2016a). Post-orogenic plutons, with ages ranging from 175 Ma to 200 Ma, 
occur across the Songpan-Ganzi Terrane (Roger et al., 2004; Zhang et al., 
2014). Along the northern and eastern margins of the Qiangtang terrane, 
the subduction of the Jinsha Ocean was mostly accommodated by both 
northward and southward subduction during the Triassic to possibly earli-
est Jurassic (Fig. 1) (Murphy et al., 1997; Yin and Harrison, 2000; Pullen 
et al., 2008; Ding et al., 2013; Zhang et al., 2014; C. Wu et al., 2016a). 
The terrane is composed of 220–170 Ma plutonic rocks (e.g., Roger et 
al., 2003, 2004; Guynn et al., 2006; Zhang et al., 2014), and 170–100 Ma 
intrusive rocks in the southern Qiangtang terrane (Li et al., 2014; D. Liu 
et al., 2017a, 2018; Hao et al., 2016). However, the U-Pb zircon dating 
reveals the presence of Eocene granitoids (Roger et al., 2000; Spurlin et 
al., 2005) and post-collision volcanic rocks (<44 Ma) are widely scat-
tered across the Qiangtang terrane (e.g., Hacker et al., 2000; Chung et al., 
2005; Jolivet et al., 2003; Ding et al., 2003, 2007). The voluminous Late 
Jurassic to late Paleogene Gangdese batholith exposed in the southern 
Lhasa terrane is overlain by the locally deformed late Paleocene–early 
Eocene Linzizong volcanic rocks (e.g., Yin et al., 1994; Harrison et al., 
2000; Mo et al., 2005; Kapp, et al., 2007a, 2007b; Volkmer et al., 2007). 
Post-collision volcanism and dike intrusion occurred widely across the 
Lhasa terrane between 26 and 10 Ma (Miller et al., 1999; Williams et al., 
2001; Mo et al., 2006, 2007).

MESOZOIC-CENOZOIC SEDIMENTS IN CENTRAL TIBET

Jurassic-Cretaceous strata

Jurassic sediments are present across much of central and northern 
Tibet (Figs. 1 and 3). In Qaidam basin, Jurassic strata are exposed along 
the northeastern and western basin margins; they are divided into the 
lower, middle, and upper units (Qian et al., 2018) and represent important 
hydrocarbon source units as described elsewhere (Chen et al., 2010). The 
overlying Cretaceous dark-red beds disconformably overlie upper Jurassic 
strata, although the units are generally parallel (C Wu et al., 2016a). In 
the Songpan-Ganzi terrane, Jurassic rocks are restricted to local occur-
rences of coal-bearing deltaic deposits (Weislogel, 2008; Ding et al. 2013). 
Farther south, Jurassic sediments of the Yanshiping Group are widely 
exposed in the Qiangtang terrane (Figs. 3 and 4A–4C; e.g., Leeder et 
al., 1988; C.S. Wang et al., 2001a; Fang et al., 2016). This thick Jurassic 
sequence overlies Middle to Late Triassic shallow marine strata that were 
likely deposited in sub-basins marginal to the closing Songpan-Ganzi 
remnant ocean basin (Yin et al., 1988; Yin and Harrison, 2000; Zhang et 
al., 2006). Paleocurrent directions obtained from channel sandstones and 
cross stratification in Yanshiping Group sediments are generally directed 
south (Leeder et al., 1988). Northern derivation of detritus suggests that 
the marine depositional environment in the Jurassic was located near the 
southern margin of the Qiangtang terrane (Leeder et al., 1988).

Cenozoic Hoh Xil Basin

The Cenozoic Hoh Xil basin developed on the older Songpan-Ganzi 
and northern Qiangtang terranes (Fig. 1), and is composed of the basal 
Cretaceous-Eocene Fenghuoshan Group and Tuotuohe Group, the overly-
ing Yaxicuo Group, and the capping Wudaoliang Group (Liu and Wang, 
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2001; Li et al., 2018). Together, the Cenozoic strata exceed ~5800 m 
in thickness (Liu and Wang, 2001) and extend from the Tanggula Shan 
northward to the Kunlun Range, which overlies the Mesozoic sedimen-
tary units (Fig. 3). The contact between the Fenghuoshan Group and the 
underlying strata in the central portion of the basin has previously been 
described as a Cenozoic thrust placing the Fenghuoshan Group strata 
over Neogene sediments (Leeder et al., 1988; Staisch et al., 2016; McRiv-
ette et al., 2019). We observed this contact to be clearly depositional as 
indicated by the presence of wide channels of the Fenghuoshan Group 
incised into the underlying Cretaceous strata (Figs. 4D and 4E). To the 
southwest, the underlying Cretaceous strata are in normal-fault contact 
with Triassic flysch deposits (Fig. 4E).

Magnetostratigraphic analyses of the Fenghuoshan and Yaxicuo 
Groups indicate their deposition ages at 51–31 Ma (early Eocene–early 
Oligocene) and ca. 31–30 Ma (early Oligocene), respectively (Liu et al., 
2003). However, the age of the Fenghuoshan Group is suggested to range 
from ca. 72 to 51 Ma with the most recent magnetostratigraphic analy-
ses (Jin et al., 2018). Fossil assemblages further establish an Eocene 
age for the Fenghuoshan Group (Smith and Xu, 1988). However, new 
results from Staisch et al. (2014) suggest that the Fenghuoshan Group 
was deposited from 85 to 51 Ma. The lower-age bound is derived from 
Late Cretaceous fossils in the lower part of the group (Li et al., 2015) 
and the upper age was determined via a zircon age in interbedded tuff 
(Staisch et al., 2014). Recently, a tuff layer within the Fenghuoshan 
Group yielded a weighted mean U-Pb age of ca. 63 Ma (Jin et al., 2018). 
The Fenghuoshan Group was sourced from the Qiangtang terrane, and 
may share a sediment source with Cretaceous sedimentary rocks in the 
Nima Basin (Staisch et al., 2014). Dai et al. (2012) and Li et al. (2018) 
also provide detrital zircon data to argue that the Qiangtang terrane 
is the main source terrane for the Fenghuoshan Group. Furthermore, 
Staisch et al. (2014) interpreted the Tuotuohe and Yaxicuo Groups as 
coeval early Oligocene sedimentary units that unconformably overlie the 
Fenghuoshan Group. The significant deformation of the Fenghuoshan 
and Yaxicuo Group strata relative to the overlying Wudaoliang Group 

and the extensive erosional surface upon which the latter was deposited 
require that a depositional hiatus must have occurred across the vast 
majority of Hoh Xil basin in the late Oligocene (e.g., Wang et al., 2002; 
Wu et al., 2008; Staisch et al., 2016).

The Eocene to early Oligocene Tuotuohe Group unconformably over-
lies the Fenghuoshan Group and is exposed along the South Fenghuoshan 
thrust fault and in the Tuotuohe subbasin, located to the south of the 
Fenghuoshan Range (Fig. 4F; Qinghai BGMR, 1991). The inclusion of 
Fenghuoshan Group clasts within the Tuotuohe Group strata indicates that 
it was, at least in part, sourced from the Fenghuoshan Range (Staisch et 
al., 2014). The Yaxicuo Group is 670–2000 m thick and is interpreted to 
have been deposited in fluvial and lacustrine environments (Fig. 4G; Z.F. 
Liu et al., 2005b; Liu and Wang, 2001). There are paleocurrent studies 
that indicate the Yaxicuo Group also received detritus from the north 
(Wang et al., 2008).

In the Wudaoliang Group, with a total thickness from <100 m to ~800 
m (Fig. 4H) (Liu and Wang, 2001), paleocurrent data are sparse, though 
southward flow has been documented near the base of the unit (Z.F. Liu 
et al., 2005b). It is assigned an early Miocene age based on fossil and 
pollen assemblages (Yin et al., 1988; Wu et al., 2008), consistent with 
magnetostratigraphy indicating the basal rocks were deposited between 
23.8 Ma and 21.8 Ma (Z.F. Liu et al., 2005b; Wang et al., 2008). The 
most robust constraint for the upper age limit of the Wudaoliang Group 
is ca. 11 Ma based on late Miocene to Pliocene sporopollen assemblages 
in localized overlying sediments (Wu et al., 2008).

Cenozoic Sediments within the Eastern Kunlun Range

Cenozoic sediments exposed within the Eastern Kunlun Range are 
typically associated with active south-directed thrusts (Yin et al., 2007a; 
Chen et al., 2010) (Figs. 3 and 4J). Sediment deposition in the western 
segment of the Eastern Kunlun Range started in the latest Oligocene in 
a lacustrine setting (Chen et al., 2010); they are interpreted to be parts of 
a larger Oligocene Qaidam basin which were subsequently incorporated 
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into the Eastern Kunlun Range due to encroachment of thrusting from 
the range to the basin (Yin et al., 2007a; Chen et al., 2010). In the central 
and eastern segments of the Eastern Kunlun Range, Cenozoic sediments 
may have started to develop in the Neogene in alluvial fan settings (Fig. 3; 
Wu et al., 2008). These deposits have been interpreted to be the northern 
proximal facies of a large Miocene lake in the Hoh Xil region during the 
deposition of the Wudaoliang Group (Fig. 3; Wu et al., 2008). As a result, 
the depositional ages and tectonic settings of the sediments within the 
range and their relationships to the nearby Qaidam and Hoh Xil basins 
remain poorly understood.

Cenozoic Qaidam Basin

Qaidam basin is currently the largest topographic depression inside 
Tibet (e.g., Yin et al., 2002; Rieser et al., 2005; Chen et al., 2011; Wang 
et al., 2017). In the north, the south-directed North Qaidam thrust system 
juxtaposes Jurassic and older rocks over the Cenozoic strata (Fig. 3) (Yin 
et al., 2008a). In the south, the Cenozoic basin strata overlie Paleozoic and 
older rocks of the Kunlun Range in a depositional contact (Yin et al., 2007a). 
This contact is well exposed along the southwestern margin of Qaidam 
basin (Chen et al., 2011) and the contact surface can be traced via seismic 
reflection profiles as a north-dipping basement reflector below the basin fill 
(Yin et al., 2007a). The overall structure of the Cenozoic basin is a broad 
synclinorium bounded by active thrust faults in the northern and south that 
initiated at ca. 50 Ma and 30–20 Ma, respectively (Fig. 3) (Yin et al., 2008b).

Age assignments for Cenozoic strata in the Qaidam basin come from 
biostratigraphy, magnetostratigraphy, fission track, and 40Ar/39Ar dating 
of detritus in exposed strata. These data are subsequently correlated 
across the basin using a dense network of seismic reflection profiles 
and drill hole data (e.g., Yang et al., 1992; Xia et al., 2001; Sun et al., 
2005; Rieser et al., 2006a, 2006b; Fang et al., 2007; Yin et al., 2008b; 
Lu and Xiong, 2009; Chen et al., 2011; McRivette et al., 2019; Ke et 
al., 2013; Yu et al., 2014; Cheng et al., 2016; Bush et al., 2016; Ji et al., 
2017; A. Chen et al., 2017a; Wang et al., 2017). Cenozoic stratigraphic 
division and age assignments from oldest to youngest units are as fol-
lows (Chen et al., 2010): Paleocene to lower Eocene Lulehe Formation 
(Yang et al., 1992; Rieser et al., 2006a; Ke et al., 2013; Yu et al., 2014; 
Ji et al., 2017), middle Eocene to lower Oligocene Xiaganchaigou For-
mation (Yang et al., 1992; Sun et al., 2005; Yu et al., 2014; Li et al., 
2016; Ji et al., 2017), upper Oligocene Shangganchaigou Formation 
(Sun et al., 1999; Yu et al., 2014; Li et al., 2016; Chang et al., 2015; Ji 
et al., 2017), lower to middle Miocene Xiayoushashan Formation (Sun 
et al., 1999; Chang et al., 2015; Ji et al., 2017; Li et al., 2016), middle 

to upper Miocene Shangyoushashan Formation (Sun et al., 1999; Wang 
et al., 2007; Fang et al., 2007; Chang et al., 2015; Li et al., 2016; Ji et 
al., 2017), and upper Miocene and Pliocene Shizigou Formation (Sun 
et al., 1999; Fang et al., 2007; Wang et al., 2007; Yu et al., 2014; Li et 
al., 2016). The total thickness of Cenozoic Qaidam deposits exceeds 
16 km in the west and progressively thins eastward to less than 2 km in 
the east (Yin et al., 2008b; Chen et al., 2010).

METHODS

Sandstone Petrology

Analysis of the modal compositions of 12 sandstone samples involved 
counting at least 350 grains using the Gazzi-Dickinson method on each 
thin section (Dickinson, 1970; Ingersoll et al., 1984; Dickinson, 1985). 
The grain types were identified and tabulated following Ingersoll et al. 
(1984) and Dickinson (1985). As the purpose of this study is to determine 
the first-order trends, we only tabulated quartz (Q), feldspar (F), and 
lithic fragments (L) in our analysis. K-feldspar and plagioclase were dif-
ferentiated optically. Detailed sample locations and results are presented 
in the GSA Data Repository in Table S1 and Table S21, respectively. In 
summary, Jurassic and Cretaceous samples plot between “continental 
block” and “recycled orogen” fields on the ternary diagram (Fig. 5). The 
Paleocene-Eocene Fenghuoshan Group sandstone plots in the “continental 
block,” whereas the Eocene–early Miocene samples from Hoh Xil basin, 
Cenozoic Kunlun Range sediments and middle Eocene–Pliocene samples 
from Qaidam basin plot in the “recycled orogen” field (Fig. 5).

U-Pb Zircon Geochronology

Twelve sandstone samples were analyzed for detrital zircon geochro-
nology. Zircon grains were separated from 3 to 10 kg whole-rock samples 
by standard crushing, sieving, heavy liquid, and magnetic separation 
techniques. They were mounted in epoxy blocks and polished to obtain 
an even surface, and then cleaned in an ultra-sonic washer containing a 
5% HNO

3
 bath prior to laser ablation–inductively coupled plasma–mass 

spectrometry (LA-ICP-MS) analysis. To identify the internal structure 
and texture of the zircon grains and to select potential positions for U-Pb 
analysis, cathodoluminescence (CL) images of zircons were taken on a 

1GSA Data Repository Item 2019162, Tables S1–S4 and Figure S1, is available 
at http://www.geosociety.org/datarepository/2019, or on request from editing@
geosociety.org.
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Figure 5. Modal composition of sandstone samples analyzed in this study displayed in a QFL plot after Dickinson (1985).
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JXA-880 electron microscope and an image analysis software was used 
under operating conditions of 20 kV and 20 nA at the Institute of Mineral 
Resources, Chinese Academy of Geological Sciences, Beijing, China.

The zircons separated from the samples were analyzed for U, Th, 
and Pb using the LA-ICP-MS facility at the Isotopic Laboratory, Tianjin 
Institute of Geology and Mineral Resources of China Geological Sur-
vey. Laser sampling was performed using a Neptune multi-collector– 
 inductively coupled–plasma mass spectrometer (Thermo Fisher Ltd.) 
to a NEW WAVE 193 nm-FX ArF Excimer laser-ablation system (ESI 
Ltd.). The MC-ICP-MS is a double focusing multi-collector ICP-MS. 
The maximum mass dispersion was 17%. This machine has nine fara-
day cups, one fixed central channel and eight motorized Faraday cups. 
The Excimer LA system pulse width is less than 4 ns and all analyses 
were conducted with a beam diameter of 30 µm, an 8 Hz repetition rate, 
and energy density of 11 J/cm2. Approximately 100 zircon grains were 
analyzed per sample in this study. Detailed operating conditions of the 
laser ablation system and the MC-ICP-MS instrument and data reduction 
are listed in Table S3. GJ-1 was used as an external standard for U-Pb 
dating analyses (Jackson et al., 2004). Common-Pb corrections were 
made using the method of Andersen (2002). NIST SRM 610 glass was 
used as an external standard to calculate U, Th, and Pb concentrations 
of zircons. Every eight analyses were followed by two analyses of the 
standard zircon GJ-1. 207Pb/206Pb, 206Pb/238U, 207Pb/235U, and 208Pb/232Th 
ratios were calculated using ICP-MS Data Cal 8.4. Following the con-
vention of the “best age” approach to reporting U-Pb detrital zircon 
ages, the range in the cutoffs between reporting 206Pb/238U and 206Pb/207Pb 
ages was made so as to not split distinct age clusters between U-Pb and 
Pb-Pb ages (e.g., Gehrels et al., 2011). Therefore, the cutoff between 
206Pb/238U and 206Pb/207Pb was determined by the sample and was in the 
range of 900–1050 Ma. Reported uncertainties for age determination 
of individual grains are at the 1σ level and reflect measurement errors 
only. Analyses with >10% uncertainty, >20% normal discordance, or 
>5% reverse discordance are not considered further. The resulting inter-
preted ages are shown on normalized relative age-probability diagrams. 
Relative age probability plots show each age and its uncertainty (for 
measurement error only) as a normal distribution, and sum all ages from 
a sample into a single curve.

Kolmogorov-Smirnov Tests and Multidimensional Scaling

The Kolmogorov-Smirnov (K-S) statistical method is a nonparametric 
test for the equality of continuous one-dimensional probability distribu-
tions of two samples. The tested samples are displayed in cumulative 
probability diagrams, and their largest vertical difference in the plot is 
defined as the D value. Typically, a threshold value of α = 0.01 or 0.05 is 
set. That is, if the D value is >D

critical
 (α = 0.05), the null hypothesis (H

0
) 

that the two samples are drawn from the same population can be rejected. 

The critical value D can be calculated by = +D N N
N N

1.36critical
1 2

1 2
 for α 

= 0.05, where N
1
 and N

2
 are the number of dated zircon grains from the 

two samples. In this study, we dated ~100 zircon grains for each sample, 
and the corresponding critical value of D

critical
 is 0.192. The P value in 

K-S tests denotes the threshold of the significance level at which fail to 
reject the null hypothesis (H

0
). The P value must be greater than 0.05 for 

it to be statistically permissible to interpret two samples as being derived 
from the same parent distribution at the 95% confidence level.

Multidimensional scaling (MDS) of detrital zircon data attempts to 
transform the dissimilarity between samples to distance in N-dimensional 
space. Samples are represented as a point, typically in two-dimensional 

or three-dimensional Cartesian space, with greater distances between two 
points indicating greater dissimilarity between the two U-Pb age distribu-
tions. The transformation is accomplished by iterative rearrangement of 
the data in N-dimensional space to minimize the misfit (“stress”) between 
the calculated distances and the disparities, which is calculated as:

 
ij ij ij

ij ij

f x d

d

2

2

0 5.

 (1)

where d
ij
 is the distance and f(x

ij
) is the disparity between the ith and jth 

element. Disparity is calculated as a linear (1:1) transformation of the 
input dissimilarities. In a low-stress MDS plot, the distances between 
points linearly correlate with the dissimilarities between samples. Met-
ric nonclassical MDS was implemented using an in-house MATLAB 
algorithm. Dissimilarity was calculated as the complement of the 
Cross-correlation coefficient: 1-R2 (Saylor and Sundell, 2016).

Apatite Fission-Track Thermochronology

Apatite fission-track (AFT) thermochronology is based on crystal-
lattice damage manifested as linear tracks resulting from the constant-
rate spontaneous fission of trace levels of 238U in apatite grains. Fission 
tracks in apatite are incompletely annealed over the temperature range of 

~60–110 °C, which is termed the partial annealing zone (Gleadow, 1981; 
Ketcham et al., 2007). The decrease in temperature of a sample through the 
partial annealing zone as a function of time is reflected by the distribution 
of lengths for the partially annealed tracks. We conducted AFT analyses 
from 12 samples determine the low-temperature thermal history of the 
central and eastern segments of the Eastern Kunlun Range. This informa-
tion in turn permits us to infer the onset of exhumation across this range.

Fission-track ages were measured using the external detector method 
(Gleadow, 1981) and calculated using the zeta calibration method (Hurford 
and Green, 1983). Ages were calculated using the Zeta calibration method 
(Hurford and Green, 1983; Hurford, 1990) with a Zeta value of 322.1 ± 3.6 
(1 s). Apatite grains were separated from ~5-kg materials for each sample 
using standard mineral separation techniques. Polished grain mounts were 
prepared and etched to reveal spontaneous fission tracks. Apatite grain 
mounts were etched in 6.6% HNO

3
 at 25 °C for 30 s. All samples were 

irradiated at the China Institute of Atomic Energy reactor facility, Beijing. 
Low-U muscovite external detectors covering apatite grain mounts were 
etched in 40% hydrofluoric acid at 25 °C for 20 min to reveal induced fission 
tracks. In order to increase the number of observable horizontal confined 
tracks, the samples were exposed to 252Cf (Donelick and Miller, 1991). 
Horizontal confined fission-track lengths (e.g., Laslett et al., 1987; Gleadow 
et al., 1986) were measured only in prismatic apatite crystals because of 
the anisotropy of annealing of fission tracks in apatite (Green et al., 1986).

RESULTS

U-Pb Detrital Zircon Geochronology

Jurassic-Cretaceous Strata Samples
The youngest zircon ages from the middle and upper sections of 

Jurassic Yanshiping Group sandstones (samples WC072817-2A and 
WC072817-3 in Figs. 3, 4A, and 4C) constrain the maximum depo-
sitional ages of these samples to ca. 165 Ma (n = 3) and ca. 159 Ma 
(n = 3), respectively (Figs. 6C and 6E). These ages are consistent with 
the Middle and Late Jurassic ages previously assigned to these strata (e.g., 
Leeder et al., 1988; C.S. Wang et al., 2001a; Fang et al., 2016). Sample 
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WC072817-2A has 200–288 Ma (ca. 210 Ma peak) and 360–490 Ma (ca. 
410 Ma peak) zircon populations (Fig. 6E). The largest age cluster is in 
the early Proterozoic between 1750 Ma and 1950 Ma with a peak at ca. 
1888 Ma. Minor age clusters occur at ca. 165 Ma, ca. 361 Ma, 755–855 
Ma, and 2350–2550 Ma (Fig. 6E). Zircons from sample WC072817-3 
have age populations at 157–230 Ma (ca. 172 Ma peak) and 380–480 
Ma (ca. 410 Ma peak) (Fig. 6C). Minor age populations also occur at ca. 
224 Ma and 2050–2550 Ma (Fig. 6C). The age spectrums of a Jurassic 

sandstone sample from McRivette et al. (2019) and two Qaidam basin 
Jurassic samples from Qian et al. (2018) are shown as Figures 6D, 6F, 
and 6G, respectively.

The dominant age population of the Cretaceous sandstone sample 
WC072817-7B within the Hoh Xil basin (Figs. 3, 4D) is at 220–460 Ma 
with peaks of ca. 236 Ma and ca. 429 Ma (Fig. 6A). Two other significant 
populations are at 797–1000 Ma (ca. 822 Ma peak) and 1600–2100 Ma 
(broad peak centered at ca. 1834 Ma) (Fig. 6A). Minor age populations 
exist at 1000–1500 Ma and 2300–2800 Ma (Fig. 6A). One sample was 
collected from fine-grained arkosic arenite on the southwestern margin 
Qaidam basin (C. Wu et al., 2016a; sample WC051411-5). C. Wu et 
al. (2016a) interpreted the Cretaceous unit, from which the sample was 
collected, to have been deposited in a fluvial setting based on their sedi-
mentary textures and structures observed in the field. The U-Pb dating of 
detrital zircon analysis is shown as Figure 6B.

Cenozoic Samples from Hoh Xil Basin
The dominant zircon-age population of Fenghuoshan Group sandstone 

sample WC072817-7A (Figs. 3, 4D, and 4E) is at 390–480 Ma (Fig. 7G). 
Two other significant populations are at 210–300 Ma and 1600–2100 
Ma (broad ca. 1840 Ma peak) (Fig. 7G). Minor age populations exist 
at 300–390 Ma, 750–850 Ma, 900–1000 Ma, ca. 1430 Ma, and ca. 2.5 
Ga (Fig. 7G). The dominant age population of the Fenghuoshan Group 
sandstone from McRivette et al. (2019) is shown as Figure 7H. The domi-
nant age populations of the Eocene Tuotuohe Group sandstone sample 
WC072817-6 (Figs. 3 and 5F) are at 160–280 Ma and 380–490 (Fig. 7F). 
Two other significant populations are at 560–670 Ma (ca. 625 Ma peak) 
and 710–965 Ma (ca. 850 Ma peak) (Fig. 7F). Minor age populations 
exist at ca. 1.5–2.5 Ga with two broad peaks centered at ca. 1.8 Ga and 
ca. 2.5 Ga (Fig. 7F).

The dominant zircon-age populations of Oligocene Yaxicuo Group 
sandstone sample WC072717-3 are 168–300 Ma and 375–485 Ma (Fig. 
7D). Two other significant populations are at 700–850 Ma (720 Ma peak) 
and 1.5–2.1 Ga (two broad ca. 1.58 Ga and ca. 1.8 Ga peaks) (Fig. 7D). 
Minor age populations exist at 950–1200 Ma, 1300–1400 Ma, and ca. 
2542 Ma (Fig. 7D). The dominant zircon-age population of another Yax-
icuo Group sandstone (sample WC072817-1) is 64–300 Ma, with peaks 
of ca. 66 Ma, ca. 164 Ma and ca. 253 Ma (Fig. 7E). Two other minor 
populations are at 350–480 Ma and 2.0–2.55 Ga (Fig. 7E).

Four zircon-age populations were observed in the Miocene Wudao-
liang Group sample WC072717-1 (Figs. 3 and 4H): 220–320 Ma, with 
two peaks at ca. 248 Ma and ca. 310 Ma, 400–500 (ca. 434 Ma peak), 
Neoproterozoic ages peaking at ca. 907 Ma, and Paleoproterozoic ages 
peaking at ca. 1836 Ma (Fig. 7A). Several grains also yielded ca. 2.5 Ga 
ages. Sample WC072717-1 yielded a single ca. 28 Ma zircon grain, and 
although this value is not a robust estimate of the maximum depositional 
age because it is based only one zircon analysis (Fig. 7A). McRivette et 
al. (2019) collected two sandstone samples from lower and upper sec-
tions of the early Miocene Wudaoliang Group and three age populations 
are evident for both samples (Figs. 7B and 7C) that is consistent with 
our age results.

Cenozoic Eastern Kunlun Range Samples
The inferred Neogene-age sandstone sample WC072917-2A is a 

medium-grained red sandstone whereas sample WC072917-2B is a 
medium-grained gray-brown sandstone (Fig. 4J). The majority of zir-
cons of sample WC072917-2A comprise two main populations: 210–290 
Ma (ca. 240 Ma peak) and 390–470 Ma (ca. 428 Ma peak) (Fig. 8A). A 
smaller broad peak is defined by zircons with middle Proterozoic ages 
at 900–1090 Ma (Fig. 8A). There are several zircon grains with ages 
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between ca. 1.5 Ga and ca. 2.5 Ga (Fig. 8A). The majority of zircons of 
sample WC072917-2B comprise two main populations: 210–290 Ma (ca. 
240 Ma peak) and 390–470 Ma (ca. 430 Ma peak) (Fig. 8B). There are 
numerous Neoproterozoic zircons and several grains with ages between 
ca. 1.5 Ga and ca. 2.5 Ga (Fig. 8B). McRivette et al. (2019) present 
zircon ages from an inferred Neogene-age sandstone sample from an 
intermontane basin within the Eastern Kunlun Range, it shows similar 
age populations (Fig. 8C).

Cenozoic Samples from Qaidam Basin
Zircon ages from the Lower Xiaganchaigou Formation sandstone 

sample 5 (Figs. 3, 4I, and 9F) from McRivette et al. (2019) are clustered 
at 210–290 Ma and 370–480 Ma (Fig. 9F). Numerous ages extend from 
the middle to late Proterozoic, and smaller age populations are also pres-
ent at 1.8–2.0 Ga and ca. 2.5 Ga (Fig. 9F). Cheng et al. (2016) reported 
the zircon ages of Lower Xiaganchaigou Formation sandstone from the 
Huatugou section within the northwest Qaidam basin that range from ca. 
2660 Ma to ca. 180 Ma, with two prominent peaks at ca. 430 Ma and ca. 
260 Ma. Over 65% of the detrital zircon ages for the Upper Xiaganchaigou 
Formation sandstone sample WC072417-9 (Figs. 3 and 4K) are <500 Ma 
and comprise two age populations at 350–500 Ma and 220–280 Ma (Fig. 
9E). The remaining detrital zircon ages are widely scattered throughout 
the Proterozoic, with a minor ca. 872 Ma peak, and extend into the Middle 
to Late Archean (Fig. 9E).

Over 85% of the detrital zircon ages for the late Oligocene Shang-
ganchaigou Formation (sample 6 in Figs. 3 and 9D) from McRivette et al. 
(2019) are <500 Ma and comprise two age populations at 350–500 Ma and 
220–280 Ma (Fig. 9D). A few ages fall between the two age populations. 
The remaining detrital zircon ages are widely scattered throughout the 
Proterozoic and extend into the Middle to Late Archean (Fig. 9D). Over 
85% of the detrital zircon ages for the Xiayoushashan Formation sand-
stone sample WC100310-2A (Figs. 3 and 4L) are <500 Ma and comprise 
two age populations at 220–280 Ma and 350–500 Ma (Fig. 9C). Zircon 
grains analyzed from the Xiayoushashan Formation sandstone within the 
Huatugou section by Cheng et al. (2016) provided ages ranging from ca. 

2380 Ma to ca. 235 Ma, with a small peak at ca. 260 Ma, a major peak 
at ca. 400 Ma, and a subpeak at ca. 960 Ma.

Most zircons in the late Miocene Shangyoushashan Formation sand-
stone sample (Fig. 3) from McRivette et al. (2019) are of Paleozoic and 
Mesozoic ages, defining two age groups at 250–290 Ma and 395–510 
Ma (Fig. 9B). The majority of the older zircon ages are evenly distributed 
between 825 Ma and 1240 Ma (Fig. 9B). Cheng et al. (2016) reported 
two Shangyoushashan Formation sandstones (samples SZG2 and CSL4) 
within the Huatugou section. U-Pb zircon ages of sample SZG2 are 
between ca. 2020 Ma and ca. 235 Ma with two peaks at ca. 440 Ma and 
ca. 250 Ma. Some additional ages (less than 20%) are spread between 
ca. 1990 Ma and ca. 520 Ma, with a smaller population at ca. 870 Ma. 
Analyses from sample CSL4 yield ages between ca. 2378 Ma and ca. 235 
Ma, with three peaks at ca. 880 Ma, ca. 430 Ma, and ca. 220 Ma.

Detrital zircon ages of the Pliocene Shizigou Formation sandstone 
sample (Fig. 3) from McRivette et al. (2019) are also primarily <500 Ma, 
with a dominant cluster at 375–480 Ma (ca. 436 Ma peak) and a smaller 
population at 225–290 Ma (ca. 270 Ma peak) (Fig. 9A). Older zircon ages 
are scattered throughout the Proterozoic. Cheng et al. (2016) reported 
zircon analyses of a Shizigou Formation sandstone from the Huatugou 
section within the Qaidam basin with three zircon-age peaks at ca. 890 
Ma, ca. 430 Ma, and ca. 240 Ma.

Kolmogorov-Smirnov Tests and Multidimensional Scaling 
Tables 1A and 1B display comparison of age spectra of samples from Juras-
sic-  Cretaceous and Cenozoic strata, respectively. The large P values (i.e., 
>0.05) imply that the age spectra of samples WC051411-5 and bD106 may 
have been drawn from the same parent population as sample WC072817-7B 
(Table 1A). However, the D value between the age spectra of the sample 
WC072817-7B and that of samples WC051411-5 and bD106 are only 0.145 
and 0.164 (Table 1A), respectively, which are <D

critical
 (α = 0.05). The large 

P values (i.e., >0.05) imply that the age spectra of samples bD106, sample 
1, and bD303 may have been drawn from the same parent population as 
sample WC072817-2A (Table 1A). In contrast, the D value between the 
age spectra of the WC072817-2A and that of bD106 and bD303 are only 
0.140 and 0.129 (Table 1A), respectively, which are <D

critical
 (α = 0.05).
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et al. (2019). See Table S4 for detailed data.
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The large P values (i.e., >0.05) imply that the age spectra of Tuo-
tuohe Group (WC072817-6), Yaxicuo Group (WC072817-1 and 
WC072717-3), Wudaoliang Group (i.e., WC072717-1, sample 3 and 
sample 4), Cenozoic Eastern Kunlun sediments (i.e., WC072917-2A, 
WC072917-2B, and sample 9), and Lower Xiaganchaigou Formation 
(sample 5) samples may have been drawn from the same parent popu-
lation as the Fenghuoshan Group sandstone samples (i.e., WC072817-
7A and sample 2) (Table 1B). The D values between the age spectra 
of the Fenghuoshan Group sample and that of these above samples 
are >D

critical
 (α = 0.05) (Table 1B). The samples from Cenozoic Hoh 

Xil basin sediments, Cenozoic Eastern Kunlun sediments, and Lower 
Xiaganchaigou Formation sandstone may have been drawn from the 
same parent function as Wudaoliang Group sandstone samples as sup-
ported by K-S test results with large P values (i.e., >0.05). This result 
is also consistent with those D values (Table 1B). A K-S comparison 
of the zircon-age spectra of Fenghuoshan Group, Wudaoliang Group, 
and Cenozoic Qaidam basin sandstone samples (i.e., sample 5, sample 
6, sample 7, and sample 8) may imply that they were drawn from the 

sample parent population as Cenozoic Eastern Kunlun sediments as 
evidenced by the large P values (i.e., >0.05), which is consistent with 
the results of D values (Table 1B).

In the three-dimensional MDS plot (left panel in Fig. 10), the black 
solid lines and the gray dashed lines point from each sample to its clos-
est neighbor and second closest neighbor respectively. The Shepard 
plot (right panel in Fig. 10) shows the distances in the MDS that repre-
sent dissimilarities between the data sets well (stress is low, 0.30378). 
The MDS shows that, for all our analyzed samples, there is a system-
atic similarity in sediment provenance between Jurassic Qaidam basin 
samples (bD106 and bD303), Cretaceous Hoh Xil sandstone sample 
WC072817-7B, Cenozoic Hoh Xil basin samples, and Cenozoic Eastern 
Kunlun sediments (i.e., WC072917-2A, WC072917-2B, and sample 9) 
(Fig. 10). The closest neighbor of the Cenozoic Hoh Xil basin samples 
and Jurassic-Cretaceous Qaidam sandstone samples is the Jurassic Hoh 
Xil sandstone samples (Fig. 10). The closest neighbor of the Qaidam 
Miocene-Pliocene strata and Hoh Xil Wudaoliang Group sandstone 
samples are the Qaidam Eocene-Oligocene samples (Fig. 10).
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TABLE 1. P AND D VALUES USED IN TWO-SAMPLE KOLMOGOROV-SMIRNOV TEST RESULTS FOR JURASSIC-CRETACEOUS (A) AND CENOZOIC (B) SEDIMENTS

A

P-value                  D-value (7E) (7C) (7A) (7B) (7D) (7F) (7G)

(7E) WC072817-2A – 0.000 0.005 0.018 0.096 0.510 0.195
(7C) WC072817-3 0.296 – 0.000 0.000 0.000 0.000 0.000
(7A) WC072817-7B 0.232 0.391 – 0.209 0.001 0.125 0.017
(7B) WC051411-5 0.220 0.326 0.145 – 0.000 0.008 0.001
(7D) Sample 1 0.192 0.419 0.297 0.357 – 0.089 0.000
(7F) bD106 0.120 0.391 0.164 0.245 0.199 – 0.046
(7G) bD303 0.149 0.359 0.202 0.277 0.315 0.196 –

B

P-value                  D-value (8G) (8H) (8F) (8E) (8D) (8A) (8B) (8C) (9A) (9B) (9C) (10F) (10E) (10D) (10C) (10B) (10A)

(8G) WC072817-7A – 0.739 0.223 0.000 0.998 0.771 0.318 0.720 0.004 0.021 0.001 0.071 0.000 0.000 0.000 0.003 0.001
(8H) Sample 2 0.106 – 0.299 0.000 0.890 0.719 0.116 0.358 0.033 0.070 0.002 0.187 0.000 0.000 0.000 0.015 0.009
(8F) WC072817-6 0.161 0.163 – 0.002 0.296 0.624 0.100 0.385 0.001 0.007 0.005 0.135 0.000 0.000 0.000 0.002 0.001
(8E) WC072817-1 0.464 0.404 0.344 – 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000
(8D) WC072717-3 0.056 0.091 0.151 0.436 – 0.494 0.301 0.878 0.003 0.022 0.000 0.083 0.000 0.000 0.000 0.003 0.001
(8A) WC072717-1 0.094 0.109 0.116 0.396 0.118 – 0.038 0.552 0.000 0.000 0.000 0.038 0.001 0.000 0.000 0.000 0.000
(8B) Sample 3 0.139 0.190 0.192 0.437 0.141 0.204 – 0.373 0.000 0.000 0.000 0.004 0.003 0.000 0.000 0.000 0.000
(8C) Sample 4 0.110 0.158 0.153 0.396 0.093 0.126 0.147 – 0.003 0.006 0.001 0.148 0.004 0.000 0.000 0.014 0.005
(9A) WC072917-2A 0.250 0.224 0.294 0.396 0.254 0.330 0.359 0.287 – 0.998 0.311 0.554 0.000 0.217 0.000 0.097 0.604
(9B) WC072917-2B 0.215 0.203 0.259 0.392 0.214 0.305 0.336 0.271 0.055 – 0.529 0.732 0.000 0.114 0.000 0.125 0.531
(9C) Sample 9 0.310 0.324 0.291 0.384 0.338 0.325 0.418 0.349 0.152 0.128 – 0.082 0.000 0.026 0.002 0.003 0.043
(10F) Sample 5 0.197 0.180 0.190 0.386 0.193 0.215 0.276 0.191 0.121 0.105 0.212 – 0.000 0.009 0.000 0.321 0.174
(10E) WC072417-9 0.315 0.363 0.317 0.583 0.328 0.276 0.261 0.279 0.533 0.503 0.593 0.412 – 0.000 0.000 0.000 0.000
(10D) Sample 6 0.371 0.351 0.408 0.422 0.361 0.459 0.498 0.410 0.159 0.182 0.246 0.266 0.677 – 0.000 0.000 0.236
(10C) WC100310-2A 0.557 0.486 0.398 0.422 0.537 0.495 0.534 0.502 0.421 0.413 0.298 0.507 0.691 0.544 – 0.000 0.000
(10B) Sample 7 0.286 0.269 0.321 0.480 0.291 0.376 0.405 0.275 0.196 0.188 0.314 0.161 0.382 0.355 0.602 – 0.167
(10A) Sample 8 0.323 0.293 0.359 0.427 0.327 0.399 0.451 0.314 0.127 0.135 0.250 0.194 0.539 0.180 0.548 0.202 –
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Apatite Fission-Track Thermochronology

We collected 11 Paleozoic granite samples for AFT analyses from 
the eastern (Fig. 11) and central (Fig. 12) segments of the Eastern 
Kunlun Range. Results of nine samples (Fig. S1) from our previous 
work (Chen et al., 2011) are also summarized for comparison. AFT 
results are listed in Table S4. Sample locations and AFT pooled ages are 
shown on Figure 13. AFT ages for almost all analyzed samples range 
between 17 ± 1 Ma and 58 ± 3 Ma (1σ), with the exception of sample 
WC100110-1B, which has a significantly older AFT age of 82 ± 4 Ma 
(1σ). Because fission-track systematics in apatite are characterized by a 
partial annealing zone between ~60 and 110 °C, AFT ages and measured 
fission-track length distributions can be inverted to produce compatible 
thermal history paths. All models were further constrained by a surface 
temperature of 10 °C. We performed inverse modeling of the AFT data 
using the AFTSolve software of Ketcham et al. (2000) and the kinetic 
annealing model for apatite of Ketcham et al. (1999). Figure 13 shows 
the measured track-length distributions and modeled time-temperature 
paths for AFT analyses in the left column and the best-fit AFT modeled 
history in the right column.

The AFT age results provide information about the timing of uplift of 
the Eastern Kunlun Range. West of the Golmud-Lhasa Highway, samples 
display a southward-younging trend for the onset of rapid cooling. All 
samples, except sample MM4-30-04-1C (Fig. S1; Chen et al., 2011), 
show rapid cooling through the apatite partial annealing zone after 20 
Ma (Fig. 13), which is consistent with the pooled AFT ages reported 
above (Table S4). Sample MM4-30-04-1C (Fig. S1), collected from the 
northernmost margin of the Eastern Kunlun Range, cooled rapidly at ca. 
50 Ma (Chen et al., 2011).

DISCUSSION

A comparison of the Qaidam and Hoh Xil basins’ stratigraphy reveals 
important differences in their depositional histories and topographic evolu-
tion. Qaidam basin experienced essentially continuous non-marine sedi-
mentation in dominantly fluvial and lacustrine environments from the early 
Eocene through the Holocene (Yin et al., 2008b; McRivette et al., 2019). 
The topographic evolution of the southern edge of the Qaidam basin can 
be separated into three main phases (Cheng et al., 2016): (1) onset of exhu-
mation in the Eastern Kunlun Range initiating during or possibly before 
the deposition of the Paleocene Lulehe Formation; (2) middle Eocene to 
Oligocene widening of Qaidam basin toward the south and east; and (3) a 
Miocene to present increase in topography of the Eastern Kunlun Range 
and the Altyn Tagh Ranges, progressively enclosing the Qaidam basin. 
This long uninterrupted history contrasts strikingly with the evolution of 
Hoh Xil basin, which experienced a distinct two-stage development: (1) 
Eocene and early Oligocene non-marine fluvial and lacustrine deposition 
in the Hoh Xil basin, largely similar to those existing contemporaneously 
in Qaidam basin; and (2) deposition of Miocene strata, characterized by 
lacustrine carbonate and fine-grained clastic deposits, unconformably over 
deformed Paleogene strata, which are only gently warped and appear to 
have been deposited on an extensive erosional surface (Wang et al., 2002; 
Wu et al., 2008).

The late Oligocene depositional hiatus in Hoh Xil basin can be attrib-
uted to deformation and uplift of the Paleogene basin sediments at this 
time (e.g., Liu and Wang, 2001; Wang et al., 2002). This migration has 
been interpreted to indicate that deformation in the Fenghuoshan region 
initiated as early as the early Eocene and proceeded via in-sequence 
development of northeast-directed thrusts (Wang et al., 2002; Zhu et 
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al., 2006; Staisch et al., 2016). Pre-Miocene northeast-southwest crustal 
shortening strain across central Tibet in the Fenghuoshan area has been 
estimated to be ~40% (Wang et al., 2002), ~45% (>61 km shortening; 
Spurlin et al., 2005); and 24% (>40 km shortening; Staisch et al., 2016). 
Furthermore, the record of Cenozoic deformation in Qaidam basin is more 
complicated than in Hoh Xil basin. Paleocene to early Eocene thrusting 
has been documented along the northern margin of Qaidam basin, asso-
ciated with the southern Qilian Shan–Nan Shan thrust belt (Yin et al., 
2002, 2008a, 2008b). Interpretation of subsurface data across Qaidam 
basin indicates that significant deformation initiated much later along 
its southern margin at 29–24 Ma (Yin et al., 2008a, 2008b). Initiation 
of widespread uplift of the Eastern Kunlun Range in the late Oligocene, 
becoming increasingly more rapid, is also supported by low-temperature 
thermochronology (Mock et al., 1999; Jolivet et al., 2001; Wang et al., 
2004; Y. Liu et al., 2005a; Yuan et al., 2006; Dai et al., 2013).

Provenance Interpretations and Tectonic Setting of the Basins

Our inferences on the tectonic setting and depositional processes are 
based on the published and our new U-Pb detrital zircon dating (Figs. 6 
and 14), sandstone composition analyses (Fig. 5), K-S tests (Table 1), 
MDS (Fig. 10), lithofacies of the sedimentary units, and field relation-
ships. We use the relationship between detrital zircon age populations 
and the depositional age of the sediments to infer the tectonic setting of 
the basins as discussed in Cawood et al. (2012).

Jurassic-Cretaceous Strata
For three Jurassic samples from the Southern margin of the Hoh Xil 

basin (Figs. 6C, 6D, and 6E), the two prominent populations with peaks 
at ca. 220 Ma and ca. 410 Ma correspond to the bimodal age distribution 
characteristic of the Kunlun batholith (e.g., C. Wu et al., 2016a). While 
the presence of these ages is expected in sandstones collected from Hoh 
Xil (e.g., Staisch et al., 2014; Li et al., 2018) and Qaidam basins (e.g., 
Cheng et al., 2016; Wang et al., 2017; Qian et al., 2018) flanking the 
Eastern Kunlun Range, their prominence in the Jurassic sandstones of 
the southern Hoh Xil basin–Qiangtang terrane is intriguing. Sediment 
supply from the north is recognized by southward paleocurrent indica-
tors in Yanshiping Group strata (Leeder et al., 1988; Ding et al., 2013). 
Alternatively, the prominent Kunlun signature may also be explained by 
erosion of the Kunlun arc and distant transport of detrital material to the 
south, implying Jurassic unroofing of the Eastern Kunlun region. This 
hypothesis is consistent with the generally mature nature of the Yanship-
ing Group sediments and their “craton interior” provenance (Leeder et 
al., 1988; this study).

The broad detrital zircon age peaks at ca. 1870 Ma and ca. 2500 Ma 
in these Jurassic samples allow us to better suggest that the Jurassic sedi-
ments of the southern Hoh Xil basin–Qiangtang terrane were at least par-
tially sourced from the Triassic flysch sequence to the north (e.g., Bruguier 
et al., 1997; Weislogel et al., 2006; Weislogel, 2008; Enkelmann et al., 
2007; Ding et al., 2013). Furthermore, it is likely that the Jurassic sedi-
ments were derived mostly from recycling of strata in the north portion 
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of the Songpan-Ganzi terrane (McRivette et al., 2019). These recycled 
zircons may have been transported as far south as the southern margin 
of the Qiangtang terrane near the Bangong-Nujiang suture zone (Fig. 1), 
as indicated by detrital zircon results sediments located near the suture 
(Leier et al., 2007). However, the Mesozoic ages with ca. 170 Ma peak 
from the Jurassic samples do not clearly match reported geochronologic 
data from any potential source regions north of the central Qiangtang ter-
rane. Granitoids exposed in association with crystalline basement along 
the Bangong-Nujiang suture zone have been dated to ca. 170–185 Ma 
(Guynn et al., 2006), suggesting that this inferred arc may have been the 
source for the youngest Mesozoic zircons identified as a result of north-
dipping subduction of oceanic crust prior to the collision of the Lhasa 
and Qiangtang terranes (Guynn et al., 2006). These Jurassic samples 
also contain a relatively restricted cluster of Grenville ages between 750 
Ma and 1220 Ma that may reflect local derivation from Paleozoic rocks 
exposed in the central Qiangtang terrane (Pullen et al., 2008). However, 
Qilian Shan also has zircons of these ages (Gehrels et al., 2003a, 2003b; 
Wu et al., 2017; Zuza et al., 2018), and thus, recycling of marine Paleo-
zoic units exposed in the central Qiangtang terrane may also have been 
a potential source of detritus to Jurassic depositional zones to the north.

Detrital zircons from the Lower Jurassic succession are charac-
terized solely by Neoarchean-Proterozoic ages (Qian et al., 2018). In 
marked contrast, the zircon age populations from Middle to Upper 
Jurassic sandstone samples contain Permian-Triassic, Late Ordovician– 
 Devonian, Neoproterozoic, Paleoproterozoic–early Mesoproterozoic, 

and Neoarchean–early Paleoproterozoic groups (Figs. 6F and 6G). Based 
on the geochronology and paleocurrent reconstructions we suggest that 
the Quanji massif of the southern Qilian Shan (e.g., N.S. Chen et al., 
2012a; Lu, 2002; Lu et al., 2006; Gong et al., 2012, X.J. Yu et al., 2017c; 
Chen et al., 2013) was a discrete source area for these strata during the 
Early Jurassic, but the Middle–Late Jurassic sediments were sourced 
from an integrated drainage area including the Quanji massif (N.S. Chen 
et al., 2012a), Qilian Shan (e.g., Wu et al., 2017; Zuza et al., 2018), and 
Eastern Kunlun Range (e.g., C. Wu et al., 2016a). The marked changes 
in source areas between the Early and Late Jurassic provide evidence for 
intense deformation, uplift, and reorganization of the drainage network 
and source regions in the northern Qaidam region, probably related to 
extension during the Early Jurassic and contractional shortening start-
ing in the Middle Jurassic.

The age spectrum of the Cretaceous sample (Fig. 6B) in the Hoh Xil 
basin shows two prominent populations with peaks at 236 Ma and 429 
Ma, which correspond to the bimodal age distribution characteristic of 
the Kunlun batholith (e.g., C. Wu et al., 2016a). The broad detrital zircon 
age peaks at ca. 1834 Ma and ca. 822 Ma in this sample suggest that the 
Cretaceous sediments of the Hoh Xil basin were at least partially derived 
from recycling of the Triassic Songpan-Ganzi flysch sequence to the 
north. The age spectrum of the Cretaceous sample (Fig. 6A) suggests 
that its source area is local in the southern Qaidam basin, as indicated by 
the Kunlun arc zircon. We also note that the Cretaceous sample contains 
700–800 Ma zircon grains, which are similar to the basement ages of 
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Figure 13. Thermal history modeling of apatite fis-
sion-track data from the Eastern Kunlun Range in 
this study. K-S—Kolmogorov-Smirnov; GOF—good-
ness of fit; Easy Ro—calculation method for vitrinite 
maturation.

Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/11/4/524/4799950/524.pdf
by guest
on 12 January 2021

http://www.geosociety.org
https://pubs.geoscienceworld.org/lithosphere
http://www.gsapubs.org


Geological Society of America | LITHOSPHERE | Volume 11 | Number 4 | www.gsapubs.org 541

CHEN WU ET AL | Mesozoic-Cenozoic evolution of central Tibet RESEARCH

western South China (C. Wu et al., 2016a). Although the source areas 
for the Cretaceous strata are generally similar to those of the Triassic 
sedimentary rocks in the Eastern Kunlun area, the Cretaceous landscape 
must have been much more subdued than the surface topography of the 
same area in the Triassic. This is evident from the deposition of the mature 
Cretaceous arenite versus the immature Triassic arkosic sandstone in the 
Eastern Kunlun Range (C. Wu et al., 2016a). The abundance of quartz 
is likely due to chemical weathering during grain transport that removed 
the unstable mineral phases.

Hoh Xil Basin
The analyzed sandstones from the Fenghuoshan, Tuotuohe, and Yax-

icuo Groups exhibit two significant populations at 210–300 Ma and 

390–480 Ma (Figs. 14A–14C), corresponding to the characteristic ages 
of the Kunlun batholith (e.g., C. Wu et al., 2016a). A third major cluster of 
ages spans the range 1600–2100 Ma (Figs. 7D–7G). Similar to the results 
for Jurassic-Cretaceous strata (Fig. 6), these age groups are consistent 
with significant contribution of detrital material from the Songpan-Ganzi 
strata upon which the Hoh Xil basin sediments are deposited on. However, 
this age distribution is also consistent with recycling of detritus from the 
thick Jurassic strata of the Qiangtang terrane to the south. This interpreta-
tion is consistent with the dominantly northward paleocurrent directions 
obtained for strata of the Fenghuoshan, Tuotuohe, and Yaxicuo Groups 
(Leeder et al., 1988; Wang et al., 2002; Cyr et al., 2005). Petrologic analy-
ses of Paleogene sandstones point to a recycled-orogen provenance for 
the detrital material and a sedimentary lithology for the eroded source 
(Fig. 5) (Wang et al., 2002; McRivette et al., 2019; this study). While a 
contribution of detrital material directly from the Kunlun batholith cannot 
be disregarded based on the results for these sample, the batholith cannot 
be the sole source for the Paleocene-Oligocene strata of Hoh Xil basin 
(Fig. 14) (Li et al., 2018; McRivette et al., 2019).

The Miocene sandstones from the Wudaoliang Group exhibit age 
distributions similar to the Paleocene- Oligocene samples, with peaks at 
ca. 240 Ma, ca. 450 Ma, and ca. 1850 Ma (Fig. 14D). The two youngest 
peaks again correspond to the characteristic ages of the Kunlun batholith 
(e.g., C. Wu et al., 2016a). Along with smaller populations at ca. 2500 
Ma, the overall distributions for the samples are consistent with deriva-
tion from recycled Triassic Songpan-Ganzi, Jurassic Qiangtang, or Hoh 
Xil basin Paleocene-Oligocene strata, or a combination thereof. These 
Miocene samples exhibit a significant number scattered Neoprotero-
zoic detrital zircons (Fig. 14D), a pattern that is most similar to source 
from the Songpan-Ganzi flysch sequence. This suggests that the flysch 
strata were a significant contributor to the Miocene Hoh Xil strata. Thus, 
exclusive sourcing from the Kunlun batholith cannot account for the 
observed age distribution. However, unlike the Paleogene strata, lim-
ited paleocurrent data indicate southward flow for the coarse basal unit 
of the Wudaoliang Group (Z.F. Liu et al., 2005b). Isopach data for the 
Wudoaliang Group show pronounced thickening of the Miocene strata 
in the northern Hoh Xil basin, adjacent to the Eastern Kunlun Range 
(Zhu et al., 2006), suggesting that tectonic loading to the north may 
have contributed to basin subsidence.

The detrital zircon age results of the sandstone samples from the Fen-
ghuoshan, Tuotuohe, and Yaxicuo Groups generally contain only minor 
amounts of zircons with ages close to the depositional age of the sediment. 
However, a significant proportion of zircon grains have ages within ca. 
150 Ma of the host sediments, which may be attributed to a continental 
collision setting (Cawood et al., 2012). The detrital zircon ages of the 
early-middle Miocene Wudaoliang Group sandstones are much older 
than the time of sediment accumulation with <5% of grains having ages 
within ca. 150 Ma of the depositional age, which are interpreted as the 
sediments of extensional basin (Cawood et al., 2012).

Cenozoic Eastern Kunlun Sediments
The detrital zircon age peaks at ca. 245 Ma and ca. 428 Ma in the three 

Neogene Eastern Kunlun Range sandstone samples (Fig. 14E) correspond 
to the characteristic ages of the Kunlun batholith. This is consistent with 
the sedimentological observations that indicate the Neogene strata are 
generally immature and likely derived from sources within the range 
proximal to the basin. A smaller peak consists of ages at 820–1100 Ma 
(Fig. 14E). The 820–1100 Ma age crystals may be derived from the Yidun 
arc (Ding et al., 2013). However, Tarim, North China, and the Qilian 
Shan have basement plutons with similar 820–1000 Ma ages (C. Wu et 
al., 2016a, 2017). One explanation for the combination of ca. 245 Ma, ca. 
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430 Ma, and ca. 900 Ma zircon ages is that the source region may have 
been the Qilian Shan (Wu et al., 2017; Zuza et al., 2018). An alternative 
explanation is that ca. 1.0 Ga zircons were recycled from Paleozoic and 
early Mesozoic sequences exposed within the Eastern Kunlun Range itself 
(McRivette et al., 2019). We prefer the second interpretation because it is 
consistent with the local derivation expected for Cenozoic Eastern Kun-
lun sediments. We emphasize that these units have not been adequately 
characterized, and future studies may test this hypothesis.

Qaidam Basin
Normalized relative probability plots of detrital zircon ages for the 

late Oligocene, Miocene, and Pliocene sandstones collected from Qaidam 
basin (Figs. 14F–14I) all exhibit similar detrital zircon age distributions 
that are distinguishable from that of middle Eocene Xiaganchaigou for-
mations sandstone samples (Fig. 14J). All samples are characterized by 
two prominent age populations corresponding to Kunlun batholith rocks 
exposed in the Eastern Kunlun Range, while Proterozoic grains, as identi-
fied in the other analyzed samples from central and northern Tibet, are not 
present. The absence of these ages precludes consideration of Songpan-
Ganzi strata as a significant source for the late Oligocene and younger 
Qaidam basin sediments (Fig. 14F). Rather, the age distributions support 
the Kunlun batholith as the predominant source for detritus during this 
time. Results for the Miocene and Pliocene samples do show a slight 
increase in the number of grains with >700 Ma ages relative to the late 
Oligocene sandstone (Figs. 14F–14I). This change may reflect increased 
contribution of detrital material from the Qilian Shan and Altyn Tagh 
source regions, possibly as a result of continued left-lateral slip on the 
Altyn Tagh fault (Yin et al., 2002; Bush et al., 2016). The compositional 
trajectory displayed by Qaidam basin sandstones (Fig. 5) is consistent 
with our detrital zircon results that indicate younger Qaidam sediments 
were isolated from sedimentary sources that were important through much 
of the Paleogene, which is also consistent with the results of K-S testing 
(Table 1B) and the MDS (Fig. 10). These sources were replaced by uplift-
ing and/or advancing thrust belts that define the modern northwestern 
and southern topographic boundaries of Qaidam basin (Yin et al., 2002, 
2008b; Qian et al., 2018). Thus, the character of Qaidam basin sediments 
changed in concert with the evolution of the basin margins, with exposure 
of Precambrian basement rocks in Altyn Tagh Range uplifts and unroof-
ing of voluminous igneous rocks in the Eastern Kunlun Range driving 
compositions toward a more mixed provenance (Zhu et al., 2018). The 
Eocene zircon ages were reported in early Miocene sample of Cheng et 
al. (2016), which is possibly be derived from the Cenozoic volcanic rocks 
exposed on the northern margin of the Qiangtang terrane (Jolivet et al., 
2003; Ding et al., 2007).

Two prominent peaks at ca. 260 Ma and ca. 430 Ma of the Xiagan-
chaigou Formation are characteristic of zircons ultimately derived from 
the Kunlun batholith (Fig. 14J). In addition, the distribution includes 
small populations of zircons with peaks at ca. 1.8 Ga and ca. 2.5 Ga, and 
several middle and late Proterozoic ages that do not constitute a clear peak. 
This pattern is consistent with supply of detrital material to the Eocene 
Qaidam basin from Songpan-Ganzi strata. Similarly, a southern deriva-
tion is suggested by the ca. 40 Ma zircon grains in the Xiaganchaigou 
Formation samples (Fig. 14J); potential sources for zircons of this age are 
all located to the south of the Eastern Kunlun Range, including scattered 
Cenozoic volcanic rocks and small intrusions identified in central Tibet 
(Roger et al., 2000; J.H. Wang et al., 2001b; Ding et al., 2003; Spurlin et 
al., 2005; McRivette et al., 2019) and widely exposed Paleogene igneous 
rocks in the Lhasa terrane (e.g., Harrison et al., 2000; Kapp et al., 2005). 
Furthermore, the ca. 1.8 Ga and ca. 2.5 Ga populations are also probably 
from the Quanji Massif in the northern Qaidam basin (e.g., Lu, 2002; Lu 

et al., 2006; Gong et al., 2012; X.J. Yu et al., 2017c; Chen et al., 2013; Li 
et al., 2018; Zhu et al., 2018). One sample was collected from an outcrop 
located along the southern margin of Qaidam basin in which rare trough 
cross-stratification gives a mean paleocurrent direction of 358° (McRiv-
ette et al., 2019). Taken together, the detrital material deposited as part of 
the Xiaganchaigou Formation in Qaidam basin was transported from the 
south. In particular, the presence of ages corresponding to the Songpan-
Ganzi flysch sequence strongly support that sedimentary transport across 
the Eastern Kunlun region was possible in the middle Eocene. The tec-
tonic settings of the Xiaganchaigou Formation sandstones are possibly 
related to a continental collision setting (Cawood et al., 2012). The U-Pb 
detrital zircon ages for the Lulehe Formation support the existence of a 
drainage divide between the Qaidam and the Hoh Xil basins, preventing 
the Neoproterozoic grains of the Qiangtang terrane from reaching the 
Qaidam basin (Cheng et al., 2016; Bush et al., 2016) (Fig. 14K). Bush 
et al. (2016) suggested that the upper Lulehe Formation of the Qaidam 
basin was beginning to receive sediments from the Qilian Shan at this time.

Mesozoic and Cenozoic Cooling History of the Eastern Kunlun 
Range

Multiple phases of Mesozoic and Cenozoic cooling and uplifting 
events are derived from fission-track dating and thermal history mod-
eling of AFT ages from several plutons in the Eastern Kunlun Range. 
Muscovite, biotite, and K-feldspar 40Ar/39Ar thermochronology reveal 
a range-wide Mesozoic cooling event that was locally overprinted by a 
Cenozoic cooling event at ca. 30–20 Ma (Mock et al., 1999; Y. Liu et al., 
2005a; Wang et al., 2005). AFT studies suggest that the Eastern Kunlun 
region experienced rapid and widespread cooling at ca. 20–10 Ma, pos-
sibly related to Cenozoic range uplift in response to Indo-Asian collision 
(Jolivet et al., 2001; Wang et al., 2004; Y. Liu et al., 2005a; Yuan et al., 
2006) (Fig. 15A). However, recent low-temperature thermochronology 
results have been published which suggest early Cenozoic uplift of the 
Eastern Kunlun Range (e.g., Clark et al., 2010; Wang et al., 2016, 2017; 
Liu et al., 2017b) (Fig. 15B). Our AFT results primarily reveal rapid 
cooling of rocks exposed in the Eastern Kunlun Range at ca. 15–20 Ma 
(Figs. 13 and 15A). The AFT results for sample MM4-30-04-1C indicate 
a rapid cooling event occurred at ca. 45 Ma, consistent with other stud-
ies of local Paleogene exhumation (e.g., Clark et al., 2010) (Fig. 15B), 
which may imply that contractional structures were locally developed 
across the forebulge, possibly having reactivated older structures (e.g., 
Meyers et al., 1992). This is consistent with the short-lived development 
of a small foreland basin which formed on the northern margin of the 
Eastern Kunlun Range. The forebulge may have localized the stress that 
led to later uplift of the Eastern Kunlun Range through development of the 
Kunlun transpressional system of Yin et al. (2008b). However, Cheng et 
al. (2016) argued for a pre-Paleocene exhumation of the Eastern Kunlun 
Range using detailed petrological analysis, and Dupont-Nivet et al. (2010) 
suggested that the Eastern Kunlun Range had already been deformed or 
partially uplifted before the India-Eurasia collision.

Accordingly, the Eastern Kunlun Range must have experienced a 
complicated Cenozoic exhumation history. Our observations of cool-
ing and exhumation (Fig. 15A) suggest that the Eastern Kunlun Range 
experienced significant uplift after ca. 20 Ma. Sedimentation patterns and 
structural analysis of seismic sections in southern Qaidam basin suggest 
that initial uplift of the range began between 29 Ma and 24 Ma (Yin et 
al., 2008b). Although the AFT data presented here suggests slightly later 
exhumation (i.e., ~4 m.y. younger), we note that the Yin et al. (2008b) 
age is based on growth strata observed in the Qaidam basin–wide Shang-
ganchaigou formation, which records regional deformation initiation. 
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The thermochronology records exhumation of relatively restricted thrust 
panels (Fig. 15B) that may have been uplift slightly after regional defor-
mation initiated. Thus, we believe that these ages are compatible, showing 
uplift of the southern Qaidam basin and Eastern Kunlun Range in the late 
Oligocene–early Miocene (Fig. 15A). We note that this conclusion does 
not preclude the Eastern Kunlun Range to be the site of a broad structural 
arch prior to the Neogene. In fact, Paleogene isopach data for Qaidam 
basin suggest that the range was a structural high relative to its depocen-
ters, generally located along the present-day axis of the basin (Yin et al., 
2008b). The apparent lack of Eocene strata within the Eastern Kunlun 
Range (Pan et al., 2004) also implies that the region was a structural 
high. This Paleogene structural high, superposed on the Permian-Triassic 
Kunlun suture, may have been a forebulge induced by loading of the 
lithosphere by the Qilian Shan–Nan Shan thrust belt in the north and the 
Fenghuoshan-Nangqian thrust belt in the south. Jurassic (194–144 Ma) 
and Early Cretaceous (115–100 Ma) cooling and exhumation revealed by 
zircon fission-track ages (Chen et al., 2011) are consistent with the absence 
of Jurassic and Cretaceous strata across most of the study area (Fig. 15B).

Cenozoic Basin Evolution of Central Tibet

Based on the data outlined above, we propose that the Cenozoic basins 
of the central and northern Tibetan plateau developed contiguously, and 
that the Hoh Xil and Qaidam basins originally comprised a single, large 
Paleo-Qaidam basin (Yin et al., 2008b). The proposed basin evolution 
and tectonic reconstruction are outlined below and shown in Figure 16.

In the Jurassic-Cretaceous, the Eastern Kunlun experienced a phase of 
unroofing, as part of widespread extension documented across north Tibet 
in the Mesozoic (Jolivet, 2017), which resulted in exposure and erosion 
of the Permian-Triassic Kunlun batholith (Fig. 16A). This hypothesis is 
also consistent with the results of our K-S testing (Table 1A) and MDS 
(Fig. 10). The unroofing of the Kunlun region in the Mesozoic supplies 
Kunlun Permian-Triassic batholith-age zircons rather than being derived 
exclusively from the Songpan-Ganzi terrane. The additional material 
deposited in the Yanshiping Group of the Hoh Xil basin sediments (Figs. 
6C–6E) may have come from southern Qiangtang terrane and/or Qilian 
Shan sources, accounting for the Jurassic (ca. 150–170 Ma) and Grenville 
ages, respectively. The Jurassic Dameigou and Xiaomeigou formations of 
the Qaidam basin sediments (Figs. 6F and 6G) may have come from the 
Kunlun batholith. Based on our detrital zircon ages of the Cretaceous red 
sandstone (Fig. 6A) and its normal-fault relationship with Triassic rocks 
(Fig. 6E), extension-driven erosion and deposition may have continued 
in the Qiangtang terrane until the onset of continental collision between 
India and Asia. Additional material deposited in the Cretaceous strata in 
the southern margin of the Qaidam basin may have come from Qiangtang 
terrane and/or Kunlun sources, accounting for the middle Cretaceous ages 
(ca. 120 Ma) (Fig. 6B).

The uplift and deformation of the Jurassic-Cretaceous strata in the 
central-north Tibet was associated with the initiation of thrusting within 
the Fenghuoshan-Nangqian in the south and Qilian Shan–Nan Shan 
thrust belts in the north no later than the early Eocene (e.g., Leeder et 
al., 1988; Jolivet et al., 1999, 2001; Zhuang et al., 2011, 2018; Yuan et 
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Figure 16. Block diagrams showing proposed tectonic reconstruction of the central Tibetan plateau and evolution of Cenozoic basins.
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al., 2013; X.J. Yu et al., 2015, 2017d; L. Yu et al., 2017a; Horton et al., 
2004; Spurlin et al., 2005; Yin et al., 2008a; Wu et al., 2011). The two 
thrust belts were separated by more than 500 km and the intervening 
topographic relative low (i.e., the Paleo-Qaidam basin) was the locus 
of sedimentary deposition from both sides for much of the Paleogene 
(Fig. 16B). Sediments were shed from Jurassic and Cretaceous strata 
in the south and Jurassic strata in the north into Paleo-Qaidam basin, 
which is consistent with paleocurrent indicators (Leeder et al., 1988; 
Wang et al., 2002; Cyr et al., 2005; Cheng et al., 2016). The fluvial 
transport systems were extensive enough to transport the material at 
least as far north as the present-day southern margin of Qaidam basin 
to be deposited as part of the early Miocene Xiaganchaigou Formation. 
The similar signal seen in the Adatan and Dongchaishan-Gansen sec-
tions of Cheng et al. (2016) seems to suggest that the source area for 
the whole southern Qaidam basin was largely homogeneous by the early 
Miocene. These inferences are consistent with our results of K-S testing 
(Table 1B) and the MDS (Fig. 10). Sedimentary material derived from 
the uplifting Qilian Shan–Nan Shan belt appears to have been restricted 
to the northern margin of Paleo-Qaidam basin. The absence of Eocene 
sedimentary units in the Eastern Kunlun Range, situated near the center 
of the Paleo-Qaidam basin, is interpreted as that thrust loading associ-
ated with the two-bounding fold-and-thrust belts (i.e., Fenghuoshan-
Nangqian and Qilian Shan–Nan Shan thrust belts) may have resulted in 
a flexural bulge across the middle axis of this basin (Fig. 16B).

Compressive stresses resulting from the ongoing India-Eurasia col-
lision affected the region by ca. 50 Ma and continued to be transferred 
farther north across Paleo-Qaidam basin to the Qilian Shan (Zuza et 
al., 2018) (Fig. 16C). The Triassic Anyimaqen-Kunlun-Muztagh suture 
may have reactivated along a zone of strain localization superposed on 
the inferred flexural bulge during the Miocene, which is resulted from 
the onset of Cenozoic uplift of the Eastern Kunlun Range (Fig. 16C) as 
indicated by the low-temperature thermochronologic studies discussed 
above (Figs. 13 and 15). This uplift may have operated as a flake tectonic 
system (Oxburgh, 1972), with south-directed thrusting in the Eastern Kun-
lun Range being fed by north-directed slip at depth (Figs. 16C and 16D). 
Furthermore, the northward paleoflow directions of the Miocene deposits 
in the eastern margin of the Qaidam basin indicate that the Eastern Kunlun 
Range formed a relative positive topography at this time (Cheng et al., 
2016) (Fig. 16C). Rapid uplift of the Eastern Kunlun Range initiated to 
partition the Paleo-Qaidam basin, separate the present Qaidam basin to the 
north and the present Hoh Xil basin to the south (Fig. 16C). The Cenozoic 
uplift of the Eastern Kunlun Range is also recorded by changes in the 
paleocurrent directions both in the Qaidam basin (Cheng et al., 2016) and 
the Hoh Xil basin (Leeder et al., 1988; Wang et al., 2002; Cyr et al., 2005). 
In Hoh Xil basin, the northward flowing drainage systems were severely 
modified, and this basin transitioned from a depositional to a dominantly 
erosional phase, producing a widespread peneplanation surface (Wang 
et al., 2002). Qaidam basin received sediments from the newly uplifted 
Eastern Kunlun Range, as well as from the Qilian Shan to the north and/
or the Altyn Tagh Range to the west (Yin et al., 2002, 2008b), which were 
topographic highs since the Paleocene and Oligocene as indicated by the 
detrital zircon data (Cheng et al., 2016; this study) (Fig. 16C).

Uplift of the Eastern Kunlun Range imparted a new tectonic load onto 
southern end of this range and northern margin of the Hoh Xil basin (Fig. 
16D). The lacustrine carbonates of renewed sedimentation recorded in the 
Wudaoliang Group in Hoh Xil basin thickens toward the Eastern Kunlun 
Range (Liu and Wang, 2001; Zhu et al., 2006). In Qaidam basin, the 
Eocene zircon ages observed in an early Miocene Xiayoushashan sample 
of Cheng et al. (2016) is interpreted as be sourced from the Cenozoic 
volcanic rocks exposed on the northern margin of the Qiangtang terrane 

(Jolivet et al., 2003; Ding et al., 2007). The middle and late Miocene 
(Shangyoushashan Formation) strata in Qaidam basin became dominated 
by material sourced from the Eastern Kunlun Range to the south, as sug-
gested by the prevalence of Kunlun batholith-age zircons (Cheng et al., 
2016; this study). The detrital zircon age distributions of the late Mio-
cene–early Pliocene Shizigou Formation suggest a mixed source between 
the Eastern Kunlun Range to the south and the Altyn Tagh Range to the 
west (Cheng et al., 2016). It is important to note that the wide drainage 
system prevailing during the Eocene-Oligocene was not yet completely 
blocked, though the Eastern Kunlun Range was being increasingly rapidly 
uplifted, and some river systems still connected the Qaidam basin to the 
south (i.e., Qiangtang terrane) and west (i.e., Altyn Tagh Range) across 
the range (Fig. 16D).

Implications for Tibetan Plateau Development

The potential existence of an integrated early Cenozoic Paleo-
Qaidam basin has implications for the mechanisms of Tibetan plateau 
construction. Specifically, this wide basin (Fig. 2A) suggests that Ceno-
zoic deformation did not progressively migrate northward following the 
India-Asia collision to the south as postulated in the group of contin-
uum deformation models (e.g., England and Houseman, 1986). Instead, 
almost immediately after India-Asia collision, Paleocene-Eocene defor-
mation jumped to the mechanically weak Qilian suture zone in the 
Qilian Shan, thus creating the northern boundary of the Paleo-Qaidam 
basin and the Tibetan plateau. The relatively distributed nature of active 
deformation in the present-day Qilian Shan argues for a weak basal 
detachment beneath northern Tibet that may have been assisted this 
early episode of deformation (Burg et al., 1994). The disintegration of 
this basin in the Miocene occurred as out-of-sequence thrusting as the 
Triassic Anyimaqen-Kunlun-Muztagh suture was reactivated during 
the uplift of the Eastern Kunlun Range (C. Wu et al., 2016a). Although 
deformation zones jump discretely across the plateau during basin for-
mation and subsequent destruction, these patterns do not involve simple 
northward migration (e.g., Meyer et al., 1998; Tapponnier et al., 2001). 
Instead deformation exploits preexisting weaknesses, thus demonstrat-
ing the importance of mechanical anisotropy in the development of 
the Tibetan plateau (Kong et al., 1997; L. Chen et al., 2017b). In fact, 
out-of-sequence deformation is required if northern Tibet, including 
the Qilian Shan–Nan Shan thrust belt and Hexi Corridor foreland, has 
remained the northern boundary of the Himalayan-Tibetan orogen since 
the early Cenozoic (e.g., Clark, 2012).

Hoh Xil basin, at an elevation of ~5 km is >2 km higher than Qaidam 
basin (~2.8 km). If these two basins were connected in the Paleogene, there 
must be a viable explanation for this present-day elevation difference. Pro-
posed models include in situ crustal thickening via crustal shortening of the 
Hoh Xil basin after the early Miocene (e.g., Liu and Wang, 2001; Z.F. Liu et 
al., 2005b; Wang et al., 2002; Wu et al., 2008; Staisch et al., 2016), flake or 
wedge tectonics (Oxburgh, 1972), magmatic inflation and/or thermal uplift 
(e.g., Molnar et al., 1993; Chen et al., 2018), and/or channel flow and lower 
crustal inflation (Royden, 1996; Clark and Royden, 2000).

We suggest that our observations support a combination of wedge 
tectonics and magmatic inflation (Chen et al., 2018) to uplift Hoh Xil 
basin. We do not observe any patterns of growth-strata migration that 
may be associated with a northward migrating topographic front due to 
lower-crustal flow from areas of higher topography to lower regions. Fur-
thermore, given that the Hoh Xil basin is >2 km higher than the adjacent 
Qaidam basin, the channel flow process, if operating, would be expected 
to uplift Qaidam basin, although the strong Qaidam lithosphere may resist 
this process (Braitenberg et al., 2003). The cessation of Fenghuoshan 
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deformation in the Oligocene (Staisch et al., 2014, 2016) suggests that in 
situ crustal thickening was not the main driver of Hoh Xil surface uplift. 
The Qimen Tagh, Qaidam basin, and North Qaidam thrust systems have 
accommodated more Cenozoic strain then the Fenghoushan (e.g., Yin et 
al., 2008b; Staisch et al., 2016; Zuza et al., 2016), but are at lower eleva-
tions, which suggests crustal thickening cannot primarily lift Hoh Xil.

Neogene volcanism around Hoh Xil basin has higher La/Yb ratios than 
the Eocene volcanic rocks (i.e., thicker crust; Profeta et al., 2015; Farner 
and Lee, 2017), and lack of Neogene volcanic rocks around Qaidam 
basin suggests that Neogene magmatic inflation may be at least partially 
responsible for uplifting Hoh Xil (Chen et al., 2018). The south-directed 
thrusting observed in the Eastern Kunlun Range suggests that wedge or 
flake tectonics is translating the Qaidam upper crust over the Eastern 
Kunlun Range (e.g., Yin et al., 2007a). This system may have linked with 
earlier Qilian Shan strain via a weak basal detachment potentially related 
to preexisting weaknesses associated with early Paleozoic tectonics (Burg 
et al., 1994; Zuza et al., 2018).

CONCLUSIONS

A comparison of the Qaidam and Hoh Xil basins reveals important dif-
ferences in their depositional histories and topographic evolution during 
Mesozoic-Cenozoic. The integrated results of our study of the sedimentary 
basins of central and northern Tibet has led to the following interpretations.

(1) Sandstone petrologic results indicate a shift from continental block 
to recycled-orogen provenance for Hoh Xil strata though the Cenozoic, 
whereas Qaidam basin continuously received sediments from recycled-
orogen sources. These results are consistent with existing sedimentologic 
studies suggesting that Hoh Xil basin experienced two distinct stages 
during its evolution: a Paleogene fluvial/alluvial stage and a Neogene 
lacustrine stage. The Qaidam basin experienced a continuous develop-
ment history during which sedimentary composition evolved in response 
to basin margin deformation.

(2) In Hoh Xil basin, Jurassic-Cretaceous sediments exhibit two promi-
nent age populations at 210–290 Ma and 420–480 Ma. The Cenozoic 
sediments were recycled from the Jurassic rocks below that were them-
selves originally sourced from the Kunlun batholith. In Qaidam basin, 
detrital zircon results clearly distinguish the middle Eocene sandstone 
of the Lower and Upper Xiaganchaigou formations from the late Oligo-
cene, Miocene, and Pliocene sandstone samples. Age characteristic of 
the Songpan-Ganzi terrane (ca. 1800 Ma) are recognized in Hoh Xil and 
Paleogene Qaidam strata, but are absent in younger Qaidam strata, which 
suggests emergence of a topographic barrier between the basins near the 
beginning of the Neogene.

(3) Our AFT data from the Eastern Kunlun Range shows that rapid 
cooling did not start until after ca. 20 Ma, consistent with the Paleo-
Qaidam hypothesis in which the Hoh Xil and Qaidam basins were not 
partitioned until the beginning of the Neogene. We interpret this structural 
arch to be a flexural bulge induced by thrust loading of the Qilian Shan 
and Fenghuoshan thrust belts along the northern and southern margins 
of the Paleogene Paleo-Qaidam basin.

(4) An early Cenozoic Paleo-Qaidam basin implies that deformation 
across the Tibetan plateau did not propagate northward through time 
from the India-Asia collisional zone, but rather first exploited preexisting 
weaknesses such as in the Qilian Shan. This early thrusting established 
the northern margin of the plateau, and the Miocene jump in deformation 
to the Eastern Kunlun Range during the partitioning of the Paleo-Qaidam 
basin into the Qaidam and Hoh Xil sub-basins occurred out-of-sequence. 
This history demonstrates the importance of mechanically weak zones 
for the evolution and development of the Tibetan plateau.
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